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Abstract

Purpose – The purpose of this paper is to study the transient natural convection of a Newtonian
fluid which develops in a closed spherical annulus delimited by two vertically eccentric spheres by
using a bispherical coordinates system. The inner sphere is heated by a heat flux of constant density
and the outer one is maintained isothermal.
Design/methodology/approach – The transfer equations are written by using a bispherical
coordinates system. The Navier-Stokes equations are solved and coupled with the energy equation by
using the alternating direction implicit (ADI) and the successive over relaxation (SOR) methods.
Findings – The study of the stream function and the Nusselt number shows that the convection
motion is reinforced for the geometries characterized by positive values of the eccentricity with heat
exchange increasing. The Nusselt number increases with the modified Rayleigh number. The heat
exchange increases with the radius ratio. The results show that the steady state is reached faster
when the modified Rayleigh number increases and the influence of the eccentricity is very low on the
establishment of the steady state. The fluids flow depends strongly on the eccentricity and the
modified Rayleigh number.
Research limitations/implications – Simulations are performed for modified Rayleigh numbers
ranging from 103 to 106, for eccentricities varying between –0.6 and þ0.6 and for radius ratio
between 1.5 and 2.
Originality/value – The results of eccentricity and modified Rayleigh number effects in transient
natural convection between vertically eccentric spheres have been displayed.
Keywords Convection, Heat, Flux, Flow, Laminar flow
Paper type Research paper
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Nomenclature

Latin letters

a ¼ parameter of torus pole [m]

D ¼ hydraulic diameter, D ¼ ri � re

[m]

e ¼ eccentricity, e ¼ OiOe

D

g ¼ gravitational acceleration
[m s�2]

G1 and G2 ¼ coefficients, G1 ¼ G1 ð�; �Þ
¼ 1� cos uchh

chh� cos u
and G2 ¼

G2ðh; uÞ ¼ �
sin ushh

chh� cos u
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Gr ¼modified Grashof number,

Gr ¼ Ra

Pr

H, K ¼ dimensionless parameters,

H ¼ a

Dðchh� cos uÞ and

K ¼ a sin u

Dðchh� cos uÞ
Nu ¼Nusselt number,

Nu ¼ q�cond þ q�conv

q�cond

O ¼ sphere centre

Pr ¼Prandlt number, Pr ¼ n

a
q ¼ heat flux density [W m�2]

q* ¼ heat flux [W]

r ¼ sphere radius [m]

R ¼ radius ratio, R ¼ re

ri
Ra ¼modified Rayleigh number,

Ra ¼ gbD4

nla
q

S ¼ surface area of a sphere ( 4pr2 )

t ¼ dimensionless time, t ¼ �

D2
~tt

�t ¼ time step

T ¼ dimensionless temperature,

T ¼ l

qD
ð~TT� ~TT0Þ

�~TT ¼ difference of temperature
between the two spheres [K]

U, V ¼ dimensionless velocity
components in the transformed

plane, U ¼D

a
~UU;V ¼ D

a
~VV

x, y ¼Cartesian coordinates [m]

Greek symbols

a ¼ thermal diffusivity [m2 s�1]

b ¼ thermal expansion coefficient
[K�1]

h; u ¼ bispherical coordinates in the
transformed plane

l ¼ thermal conductivity [W m�1

K�1]

n ¼ kinematical viscosity [m2 s�1]

� ¼ dimensionless stream function,

� ¼ 1

aD
~��

� ¼ dimensionless vorticity,

� ¼ D

a2
~��

Subscripts

i ¼ internal sphere

e ¼ external sphere

0 ¼ initial time

m ¼mean

cond ¼ conduction

conv ¼ convection

Superscripts

n ¼ incrementing index of the time
evolution

p ¼ incrementing index of the
iterative process.

X ¼ average value
~XX ¼ dimensional value

Introduction
In recent decades, natural convection of a fluid enclosed in a spherical annulus located
between two vertically eccentric spheres has been investigated experimentally and
numerically in many research works, in geophysical applications, in solar energy
collectors, in thermal storage systems, in nuclear reactor designs and in many other
situations.

Some experimental and theoretical studies in the case of two isothermal concentric
spheres or cylinders have been led. Weber et al. (1973) studied natural convection to a
cooled sphere from an enclosed, vertically eccentric, heated sphere. Powe et al. (1975)
performed experimental measurements for the vertical circular cylinder with
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hemispherical ends in a spherical enclosure. Sarr et al. (2001) compare the numerical
laminar two-dimensional unsteady natural convection in a partial sector-shaped
enclosure submitted to a constant heat flux density and a uniform temperature on the
inner cylindrical wall.

Others works concerning only the steady state in the case of concentric spheres
have been carried out. Astill et al. (1980) and Garg (1992) investigated a numerical
solution for natural convection in concentric spherical annuli for radius ratio up to 2.0.
Singh and Chen (1980) developed semi-analytical studies at moderate Grashof
numbers. Caltagirone et al. (1980) highlighted the existence of a multicellular flow at
critical Rayleigh number for a radius ratio of 2.0. Ingham (1981) and Fujii et al. (1984)
conducted a numerical analysis of laminar free convection around an isothermal sphere
using a finite difference method.

Numerical studies have been done in the case of the transient flow between two
isothermal eccentric spheres (Sanjay and Subrata, 1988) for a Prandtl number equal to
10 and a modified Rayleigh number fixed to 4.0 104 (Horn et al., 2004) and for various
Prandtl numbers (158, 405 and 720) and modified Rayleigh numbers varying from 5.0
103 to 6.0 105 and for a variable kinematical viscosity.

Research concerning the transient regime flow between two vertically eccentric
spheres with the inner sphere heated by a heat flux of constant density and the outer
one maintained isothermal are very limited.

Mathematical approach
Let’s consider a Newtonian fluid characterized by a Prandtl number Pr, initially at the
constant temperature ~TT0 , enclosed in an annular space delimited by two vertically
eccentric spheres of radiuses ri and re centred respectively on Oi and Oe (Figure 1).

The eccentricity e of two vertical spheres is defined as the algebraic distance OiOe

separating the two centres of the spheres divided by the hydraulic diameter D. While
the centre of the outer sphere is above the one of the inner sphere, e is positive. While
the centre of the outer sphere is below the one of the inner sphere, e is negative.

Initially, the fluid inside the enclosure is at uniform temperature. A heat flux of
constant density q is suddenly applied to the inner sphere while the outer sphere is
maintained isothermal (~TT ¼ ~TT0). The two spheres being heated differently, a transient
natural convection develops inside the enclosed space. A numerical study of this
convection is to be carried out. To formulate and solve this problem, it is assumed that:

Figure 1.
Geometry of the problem
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. the fluid is Newtonian and the flow is laminar. The phenomena are symmetrical

with respect to the revolution axis and are two-dimensional;

. all fluid properties are taken to be constant, with the exception of the density in

the momentum equation. In this equation, variations of density are due to the

differences in temperatures and are thus at the origin of the convection motion.

These variations obey the Boussinesq linear law;

. the fluid is non absorbing and temperature gaps between the solid spherical

walls are sufficiently low so that the radiation effects are regarded as negligible;

. in the heat equation, the viscous dissipation function as well as the compression

effects are neglected.

The vorticity – stream function formalism is used.

Taking into account the geometry of the studied system, it seems more adequate to

use a curvilinear coordinates system in which boundary conditions of the domain

being studied are given by constant coordinate lines. The bispherical coordinates

system is selected. This system constitutes families of eccentric spheres whose centres

are located on the symmetrical axis and by horizontal crossed torus passing by

poles þa and �a.

On a two-dimensional flow consideration basis, the passage from the Cartesian

coordinates system (x, y) to the bispheric coordinates one (h, u) is given by Moon and

Spencer (1971):

x ¼ a
sin u

chh� cos u
and y ¼ a

shh

chh� cos u
ð1Þ

The revolution symmetrical axis is given by equations u ¼ 0 and u ¼ p. The outer

and inner spheres are respectively materialized by lines of coordinates h ¼ he and

h ¼ hi. The governing equations consist of stream function equation, momentum

equation and heat equation.

From the above assumption and the coordinate transformation, the governing

equation of the bispherical coordinates system can be obtained.

Stream function equation:

� ¼ �

K2
� 1

KH
G2
@�

@h
� G1

@�

@u

� �
� 1

H 2

@2�

@h2
þ @

2�

@u2

� �
ð2Þ

Momentum and heat equations:

for the momentum equation:

@ð�=KÞ
@t

þ 1

H
U� 3Pr:G2

K

� �
@ð�=KÞ
@h

þ 1

H
Vþ 3Pr:G1

K

� �
@ð�=KÞ
@u

¼ Pr

H2

@2ð�=KÞ
@h2

þ @
2ð�=KÞ
@u2

� �
þ Ra:Pr

KH
G2
@T

@h
� G1

@T

@u

� �
ð3aÞ
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for the heat equation:

@T

@t
þ 1

H
U� G2

K

� �
@T

@h
þ 1

H
Vþ G1

K

� �
@T

@u
¼ 1

H2

@2T

@h2
þ @

2T

@u2

� �
ð3bÞ

with:

U ¼ 1

HK

@

@u
ðK�Þ and V ¼ � 1

HK

@

@h
ðK�Þ ð4Þ

The associated dimensionless initial and boundary conditions are:

t ¼ 0 : � ¼ 0;� ¼ 0;T ¼ 0;U ¼ V ¼ 0 ð5Þ

t > 0:
(a) inner sphere (h ¼ hi)

� ¼ 0;U ¼ V ¼ 0 ð6Þ

� ¼ � 1

H2K

@2ðK�Þ
@h2

ð7Þ

@T

@h
¼ a

D

chh

sh2
h

ð8Þ

(b) outer sphere (h ¼ he)

� ¼ 0;U ¼ V ¼ 0 ð9Þ

� ¼ � 1

H2K

@2ðK�Þ
@h2

ð10Þ

T ¼ 0 ð11Þ

(c) axis line segments (u ¼ 0, u ¼ p)

@�

@u
¼ 0;

@�

@u
¼ 0;

@T

@u
¼ 0;

@U

@u
¼ 0;V ¼ 0 ð12Þ

The local and the average Nusselt numbers relative to the inner and outer spheres are
defined by:

for the inner sphere: Nui ¼
1

Ti;m � T0
and Nu ¼ Nui ¼

1

Si

ð
Si

NuidSi ð13Þ

for the outer sphere: Nue ¼
D sh2

he

a chheðTi;m � T0Þ
@T

@h
and Nue ¼

1

Se

ð
Se

NuedSe

ð14Þ
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Numerical formulation
Momentum and heat equations are treated by employing the alternating direction
implicit method (ADI) well described by Peaceman and Rach ford (1955), and stream
function is solved by using the successive over-relaxation method (SOR) with an
optimum relaxation parameter given by the formula of Bejan (1984).

By using the ADI method, vorticity and heat equations generate algebraic systems
of equations with tridiagonal matrixes which are solved by Thomas algorithm and
iterative procedure (Gourdin and Bourmahrat, 1983).

To ensure a strong stability of iterative numerical calculations and to avoid
amplifications of errors, time and space steps allowing coefficients with the same sign
for the tridiagonal systems of equations to be obtained, and leading to matrixes with
strongly dominant principal diagonals (Euvrard, 1990), were chosen.

In the numerical iterative process, the solution is considered convergent when the
relative error between the new and old values of the field variables Q for each time step
becomes less than a prescribed criterion (Wu et al., 2004), where Q represents �, T and �:

jQnew � Qoldjmax

jQnewjmax

� 10�5 ð15Þ

The calculated values of �, T and � from governing equations become the initial values
of the next time step. The steady state solution is reached when the relative error
between two consecutive step time values of all field variables inside the studied
enclosure is inferior to 0.001 per cent:

jQnþ1 � Qnjmax

jQnþ1jmax

� 10�5 ð16Þ

where superscripts n and n þ 1 indicate the time numerical indexes, respectively at
instant t and t þ �t.

Results and commentaries
For the calculation code to be validated, the case of a thermal natural convection steady
state for a Newtonian fluid (air) is studied. This fluid is enclosed in the space situated
between two concentric spheres. The outer sphere is maintained at a constant
temperature while the inner one is heated by a flux of constant density. The results are
compared with those published by Tazi et al. (1997). The gaps between these results are
less than 3 per cent in relative value (Table I).
An eccentricity equal to 0 being a singularity in the case of vertically eccentric spheres,
the value of the eccentricity is fixed to 10�3 to obtain the same results as for concentric
spheres.

Table I.
Comparison of the mean
Nusselt number in the
case of the inner sphere
heated by a flux of
constant density for
e ¼ 10�3, Pr ¼ 0.7 and
R ¼ 2

Ra 103 104 105 106 107

Nu (Our results) 2.062 3.062 4.977 7.720 12.109
Nu (Tazi et al. (1997) 2.098 3.150 5.034 7.794 12.274
Difference (%) �1.72 �2.8 �1.13 �0.95 �1.34
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In order to improve the grid system and the time step value, the sensitivity of these
parameters is studied according to the variation of the average Nusselt number
relating to the internal wall for a modified Rayleigh number equal to 105. The 41 � 41
grid system and the time step �t ¼ 10�5 constituted a good compromise between a
low cost in computing times and an acceptable precision (see Tables II and III).

In the present work, the eccentricity varies from �0.6 to þ0.6 and the modified
Rayleigh number from 103 to 106 for a Prandtl number equal to 0.7 while the ratio of
radius is fixed to 2.

Figures 2-4 represent the time evolution of isotherms and streamlines for values of
the eccentricity varying from �0.6 to þ0.4 and for a modified Rayleigh number Ra
equal to 106, the radius ratio being fixed to 2;

It is established that, by heating the internal wall, the fluid which is in contact with
this wall is of course heated and rises along the internal wall. Then, the fluid comes into
contact with the isothermal cold wall and goes down along this wall.

The isotherm lines have a spherical shape at the beginning of the heating (Figures
2(a), 3(a) and 4(a)). They become more and more deformed for all the studied values of
the eccentricity according to time (Figures 2 (b)-(d), 3 (b)-(d) and 4 (b)-(d)).
At steady state, the maximum value of the stream function �max increases with the
eccentricity. This increase is more important with negative values of eccentricity. With
increasing time, it is noted on Figures 2-4, the appearance of a free place emerging at
the bottom of the enclosure, which suggests an evolution towards a bi-cellular mode.
That shows that the convection motion is reinforced with positive eccentricities.

The displacement of the fluid vortex centre to the top when the eccentricity
increases, is noted consistently.

Table III.
Comparison of the mean

Nusselt number in the
case of the inner sphere

heated by a flux of
constant density for

e ¼ 10�3, Pr ¼ 0.7 and
R ¼ 2 for different time
steps and for a 41 � 41

grid system

Time steps 10�4 10�5 10�6

Nu 4.804 4.982 5.037
Difference (%) �4.76 �1.19 0.00
Computing time (min) 8 35 215

Table II.
Comparison of the mean

Nusselt number in the
case of the inner sphere

heated by a flux of
constant density for
e ¼ 10�3, Pr ¼ 0.7

Ra ¼ 105 and R ¼ 2 for
different grid systems

and for time step
�t ¼ 10�4

Grid system 21 � 21 21 � 41 41 � 41 41 � 61 61 � 61 61 � 91

Nu 4.943 4.940 4.804 4.8020 4.775 4.770
Difference (%) �3.63 �3.56 �0.71 �0.67 0.10 0.00
Computing time (min) 1 2 8 13 23 38
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Figure 5 shows the variation of the dimensionless mean temperature Ti,m of the
internal sphere, submitted to a heat flux of constant density q, according to
dimensionless time for Ra varying from 103 to 106, e ¼ 10�3 and R ¼ 2.

From the expressions of the temperature and the modified Rayleigh number Ra, it is
possible to write the expression of the dimensionless temperature T according to the
heat flux density q applied on the internal wall:

T ¼ lðT0 � T00
qD

ð17Þ

q ¼ v2lPr

qbD4
Ra ð18Þ

Figure 2.
Evolution of streamlines
and isotherms for
Ra ¼ 106, e ¼ �0.6,
Pr ¼ 0.7 and R ¼ 2
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In general, when the heat flux density q increases the temperature ~TT increases.
However, the relative increase of q being higher than that of the difference of
temperature ~TT� ~TT0, the definition of the dimensionless temperature shows that T
decreases when the heat flux density q increases. Thus, the dimensionless temperature
T in an unspecified point inside the studied fluid is inversely proportional to the heat
flux density applied on the internal wall and thus to the modified Rayleigh number.
This result is confirmed by the analysis of Figure 5 showing the variation of
dimensionless mean temperature Ti,m of the internal sphere with time for e ¼ 10�3 and
various values of Ra. The explanation is as follows: when the heat flux density
increases, the convection also increases; this involves a greater extraction of heat from

Figure 3.
Evolution of streamlines

and isotherms for
Ra ¼ 106, e ¼ 10�3,
Pr ¼ 0.7 and R ¼ 2
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the internal wall by the fluid in increasing motion and thus, a reduction of this wall
temperature.

Figure 6 shows the variations of the maximum value of the stream function �max

against dimensionless time for Ra varying from 103 to 106 while e ¼ 10�3 and R ¼ 2.
�max increases quickly with time up to a maximum value, then it decreases before

stabilizing when the convection steady state is reached. This is explained by the fact
that at the beginning of the process, when the heating starts, the phenomena of
conduction are more important but with time, the convection motion becomes
dominant. The steady state is established and then the fluid motion is stabilized.

It is also noted that the maximum value of the stream function �max increases in the
same direction as Ra and as the heat flux density applied to the internal sphere.

Figure 7 represents the variations of the average Nusselt number on the internal
sphere, submitted to a heat flux of constant density, against dimensionless time t for
values of Ra varying from 103 to 106, with e ¼ 10�3 and R ¼ 2. It is noted that on this

Figure 4.
Evolution of streamlines
and isotherms for
Ra ¼ 106, e ¼ þ0.4,
Pr ¼ 0.7 and R ¼ 2
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figure the Nusselt number, which characterizes heat exchange, increases with Ra. The
values of average Nusselt numbers Nui obtained in the case of the internal sphere
submitted to a heat flux of constant density while the external sphere is maintained
isothermal are more important than those obtained in the case of two isothermal
concentric spheres (Bishop et al., 1970; Scanlan et al., 1966; Chu and Lee, 1993).

Figure 8 shows the time evolution of the dimensionless mean temperature Ti,m on
the heated wall for various values of the eccentricity, for Ra ¼ 106 and R ¼ 2. The
dimensionless mean temperature Ti,m decreases as the eccentricity increases while
remaining negative; this is the case when the centre of the internal sphere is located

Figure 6.
Variations of the

maximum of the stream
function �max against
dimensionless time for

various values of Ra, for
e ¼ 10�3, and Pr ¼ 0.7

and R ¼ 2

Figure 5.
Variation of

dimensionless mean
temperature Ti,m of the

internal sphere with time
for e ¼ 10�3 and various

values of Ra
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above the centre of the external one. The result is reversed when the value of the
eccentricity is positive and increasing.

Figure 9 shows the time evolution of the maximum value of the stream function
�max with various values of the eccentricity. It is noted that the absolute value of �max

increases with the eccentricity, which allows us to say that the convection motion is
dominant in the heat transfer process.

Figure 10 represents the time evolution of the average Nusselt number Nui on the
internal sphere with various values of the eccentricity, for Ra ¼ 106.

For great values of dimensionless time, corresponding to the steady state, it is
observed that Nui increases with eccentricity e when this one is negative. It is further

Figure 8.
Time evolution of the
dimensionless mean
temperature Ti,m on the
heated wall for Ra ¼ 106,
R ¼ 2 and various values
of the eccentricity

Figure 7.
Variation of average
number Nusselt Nui of the
internal sphere according
to the dimensionless time
t for e ¼ 10�3, Pr ¼ 0.7
and various values of Ra
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noted that, for the same absolute values of eccentricity, Nui is higher for positive values
ones. These results are due to the following considerations: when the eccentricity is
increasing while remaining negative, the space of containment located in the top level
between the two spherical walls becomes larger and the phenomena of convection are
more important. In the particular case of quasi concentric spheres (e ¼ 10�3), the
phenomena of conduction are weaker and the convection becomes the heat transfer
dominating mode. The average Nusselt number number Nui of the internal sphere is
consequently more important.

The volume occupied by the fluid between the two spheres increases in the same
direction as the radius ratio R. On Figures 11 and 12, it is noted that the dimensionless

Figure 10.
Variation of the average

Nusselt number of the
internal sphere Nui

according to the
dimensionless time t for
Ra ¼ 106, Pr ¼ 0.7 and
for various eccentricity

values

Figure 9.
Variation of the maximum

value of the stream
function �max according

to the dimensionless time
t for Ra ¼ 106, Pr ¼ 0.7

and various values of the
eccentricity
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average temperature of the heated wall and the maximum value of the stream function
decrease when the radius ratio R increases. Indeed the increase in the volume of fluid
involves a much more important energy exchange due to the convection. This energy
transfer is established between the surface of the heated wall and the main fluid. This
consequently involves a deceleration of the fluid motion.

When the radius ratio R is decreasing the thermal balance is established more
quickly. The evolutions of the dynamic field show that the fluid motion intensifies with
time increasing until the time corresponding to the establishment of thermal balance.
This phase of acceleration is followed by a phase of relaxation, the duration of which
increases with R. The variations of the Nusselt number on the heated wall represented
on Figure 13 confirm that heat exchange increase with R.

Figure 12.
Variation of the maximum
of the stream function
according to the
dimensionless time t for
Ra ¼ 105, Pr ¼ 0.7 and
for various radius ratios R

Figure 11.
Variation of the
dimensionless average
temperature of the heated
wall according to the
dimensionless time t for
Ra ¼ 105, Pr ¼ 0.7 and
for various radius ratios R
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Conclusion
By using the bispherical coordinates and finite difference methods such as ADI and
SOR, the effects of eccentricity and modified Rayleigh number effects in transient
natural convection between vertically eccentric spheres have been studied.

The numerical study has shown that in this case, parameters of the fluid depend
strongly of the modified Rayleigh number as well as of the eccentricity.

The isotherm lines and the streamlines have been represented. The study of the
stream function and the Nusselt number shows that the convection motion is
reinforced for the geometries characterized by positive values of the eccentricity with
heat exchange increasing.

We also note that the Nusselt number, which characterises heat exchange, increases
with the modified Rayleigh number Ra. The heat exchange also increases with the
radius ratio R.

The results show that the steady state is reached faster when the modified Rayleigh
number increases and the influence of the eccentricity is very low on the establishment
of the steady state.
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